
mosaik – Architecture Whitepaper
Stefan Scherfke, Steffen Schütte

(stefan.scherfke|steffen.schuette)@offis.de
OFFIS, Eschwerweg 2, 26121 Oldenburg, Germany

Version: October 2012

Abstract—This paper describes the architecture of the mosaik
Smart Grid simulation platform at a very low level and the API
that a simulator has to implement in order to be used with
mosaik. This paper targets the developers and scientists that
want to work with mosaik and integrate their simulators with
it or anyone who is interested in an architecture for managing
simulator processes in a distributed way.

1 Introduction

The Smart Grid, as it is envisioned, relies on the use of information and commu-
nication technologies (ICT) for managing a large number of active components
(controllable consumers and generators as well as power grid equipment) and
sensors for keeping demand and generation of electricity at an equilibrium and
for keeping all these different resources, including the grid assets, within their
operational limits. Due to the distributed nature of the different resources, their
heterogeneity as well as their sheer number, this is a challenging task. Control
strategies/paradigms for this complex and new task still need to be developed
and in particular evaluated and tested with respect to the requirements stated
above. In order to yield sound and scientifically reliable results, simulations
have to rely on valid and (ideally) established models. As a consequence, a
lot of effort is put into the modeling and validation of both single system
components such as photovoltaics or wind energy converters and composite
sub-systems, e. g., entire low or medium voltage power grids. Therefore, it
is desirable to reuse existing models in new projects and simulation studies
as much as possible. If the existing models are implemented using different
technological platforms, for example because each model uses a platform that is
ideal for the specific problem (e. g., load flow estimation) or because models are
provided by different project partners, simulation composition (“the capability
to select and assemble simulation components in various combinations into
simulation systems” [9]) is an interesting approach. As no Smart Grid specific

1



mosaik – Architecture Whitepaper Introduction

 

 

 

 

 

 

 

 

 

 

Physical Topology 

Information Topology 

2 

3 

1 

Available simulations 

Figure 1: Identified problem areas

approach purpose-built for simulation composition could be found in literature,
we initiated the mosaik project [13] [12] in the middle of 2010.

However, a number of problems arise when reusing existing simulation
models to compose new Smart Grid scenarios. Figure 1 shows the problem
areas that mosaik aims to solve. First, the available simulators1 are usually
not designed to be reused (1). Therefore they do not offer any interface that is
appropriate for interacting with the executed simulation. Second, one has to
find a way to compose the different simulation models in a flexible way such
that different scenarios can be composed and simulated (2). The major challenge
here is to find a formalism that allows to capture Smart Grid scenarios even if
they involve many hundred resources without having to write thousand lines of
code. And finally (3), the composed simulation has to allow the interaction with
control strategies (in our research, we focus on the integration of multi-agent
based control strategies, but other approaches are supported, nonetheless).
Here, the major challenges include the integration of a standardized API for
communication with the agents such that different strategies and simulation
models can be interchanged seamlessly and the integration of the agents with
the simulation time, as most multi-agent platforms are not made to work with
simulated environments [1].

Inspired by the M&S architecture proposed by Zeigler et al. [16, p. 496], the
mosaik platform is based on six layers as shown in figure 2.

1Definition: A simulator is a program that executes simulation models. The process of execut-
ing a simulation model (manually or by using a computer program) is called simulation.

2



mosaik – Architecture Whitepaper Introduction

Syntactic layer 

Semantic layer 

Scenario layer 

Control layer  

Current research/ 
first ideas presented 
in (Schütte, 2011b) 

 
 
(Schütte, Scherfke, 
Sonnenschein 2012) 
 
 

This document 
 

Composition layer 

Technical layer 

Figure 2: Layers of the mosaik concept

The technical layer provides a mechanism to find, start and control the
available simulators at runtime and is within the focus of this paper. The
syntactical layer offers a generic simulator API to make simulators interoperable
with mosaik. On the semantic layer, the simulator properties and the models
that it can execute are semantically described in a formal way. These simulator
descriptions are then used on the scenario level to formally describe Smart
Grid scenarios. A scenario defines a certain composition and can also be used
hierarchically in other scenarios. Finally, the composition layer performs the
actual composition of simulators based on the formal scenario and simulator
descriptions, and the control layer allows to interact with the simulated entities
at runtime. The syntactic and semantic layer have been described in [14] and
the details of the scenario and composition layer will be published soon.

Figure 3 shows the rough architecture of mosaik. It is split into a server
side part which performs the actual composition and simulation as well as the
logging of all data that is produced during a simulation run. On the client side,
the user will be offered appropriate means to manage the simulation study.

First, the user specifies the scenario that is to be simulated in a formal way.
This includes the parameterization of the available simulation models and
the definition of connection rules between the entities that are part of the
models. For example, the user specifies a rule that defines that each node of
the simulated power grid shall be connected to one simulated consumer. Or
that every third node shall have 1 to 3 electric vehicles. At server-side the
scenario definition and thus the connection rules are evaluated, the required
simulators are initialized and the simulation is executed. All data generated by
the simulators will be logged for later analysis (i.e. benchmarking of potential
control strategies).

3



mosaik – Architecture Whitepaper Requirements

Configuration Results 

Specify 

relations 

Parameterize 

models 

Model A 

Model B 

Compose 

simulators 

Execution & 

Logging 

Client 
 
Server 

Szenariodefinition Analyse der Ergebnisse 
Scenariodefinition 

Composition & 
Execution 

Analysis 

Figure 3: High-level architecture of mosaik

Regardless of the chosen approach for simulation composition, the different
simulators that provide the simulation models have to be started and managed
at runtime. Such a management framework is outside the scope of the available
simulation interoperability standards. “HLA, for example, does not specify any
tools to design or deploy a federation [simulator]” [2, p. 218]. Therefore we
decided to develop an own solution to tackle this issue.

2 Requirements

The main purpose of the mosaik server package is to compose a simulation
based on a given scenario and to start and control a number of external simula-
tors to execute that simulation.

To allow the usage of proprietary simulators that may only run in dedicated
virtual machines or on servers of external partners, mosaik should not only be
able to start simulators on the local system but also on remote machines. It
should also be able to connect to simulators that are already running (e.g. in
debug mode on a developer’s machine).

In order for mosaik to start and control simulators on foreign machines, there
needs to be a service running on each machine that connects to mosaik’s main
server. That service needs to search for or detect the simulators available on
that system. It shouldn’t matter in which programming language a simulator

4



mosaik – Architecture Whitepaper Guiding Principles

is implemented. The list of these simulators needs then to be sent to mosaik’s
main server. The service must also be able to start and control the simulators.
Distributing the execution of the simulators over multiple machines also helps
increasing the scalability of the whole framework. Finally, there should be a
way to prioritize theses services. This is, for example, useful if a simulator is
available on a machine used by mosaik and, for debugging purposes, also on a
developer’s local machine.

Mosaik’s central server component needs to be able to manage the service
instances on the remote platforms (including one for the local machine). It
should also be able to execute multiple simulations in parallel. However, the
storage of data generated by the simulations should be handled by a single,
dedicated process. This process should be the only one performing disk I/O to
prevent bottlenecks due to multiple processes trying to write on the same disk.

It should be possible to connect one or more (graphical) clients to the mosaik’s
central server component to create new simulations and monitor errors and
their progress. The client should also be able to retrieve recorded simulation
data to analyze or export it.

To sum up, the following major requirements (with respect to the platform
manager described in this paper) can be defined:

• Starting simulator processes on different machines

• Connect to running simulator processes on different machines (i.e. for
connecting to a simulator running on a developer machine in debug mode)

• Detect available simulators on the different machines

• Proiorize the simulators on different machines (preferences)

• A Single logging process for writing simulator I/O data

• A single server should support multiple clients that perform individual
simulations (multi-client capability)

• Clients shall be able to retrieve the data logged by the logging process

3 Guiding Principles

Beside the functional requirements briefly described in the last section, there
are also some non-functional requirements that guide mosaik’s development.

5



mosaik – Architecture Whitepaper Guiding Principles

Mosaik will be a long-term project and people need to work with it on several
levels:

• Core developers will maintain and improve mosaik’s server components
that compose and execute the simulation.

• Simulation developers will implement mosaik’s simulation API for their
simulations.

• Scientists will need to setup mosaik and the required simulations on one
or more servers.

• Domain experts will need to create new scenarios and execute them on the
mosaik server via a GUI.

• And finally, they need to develop and implement control strategies for
multi-agent systems that control the simulated entities via the offered API.

Therefore, one of the most important non-functional requirements is a good
and exhaustive documentation as well as easily readable code. Performance is
currently not a priority, but since mosaik basically just controls other simulators,
it should scale quite well. Since a scenario might contain multiple variants
and might be executed several times, it might make sense to also distribute
its execution over multiple processes. This would allow mosaik to use a lot of
CPU cores, a lot of RAM and to be relatively easy distributed over multiple
machines.

We chose Python 3 to implement mosaik. Python is an open and platform-
independent dynamic programming language. One of its key distinguishing
features is its “very clear and readable syntax” [11]. Next to Python’s com-
prehensive standard library, there are a lot of Open Source scientific libraries
available. Koepke [5] points further reasons why Python is very well suited
for scientific applications. Milano [7, pp. 39] discusses its applicability and
performance for power system analysis.

Mercurial is used for source code version control. As a decentral version
control system, it’s more flexible and also faster than central revision systems.
Compared to Git, it has a strong focus on simplicity [8] while Git is somewhat
harder to learn.

6



mosaik – Architecture Whitepaper Overall Architecture

ClientClient

GUI GUI
Cl e tCl e t

Master Control Program (MCP)

 Platform 
Manager

 Platform 
Manager

Logger

Worker Worker

Manager Manager …

Sim Sim Sim

Worker Worker

Communication Process hierarchy

Secondary ServerPrimary Server

Sim Sim Sim
Secondary Server

Figure 4: The overall architecture of mosaik. In addition to a primary server
mosaik runs on, there can be additional secondary servers for simu-
lators. Clients can connect to mosaik to add scenarios and simulate
them.

4 Overall Architecture

To utilize the large amount of CPU cores and RAM modern servers provide,
mosaik is designed as a ZeroMQ-based distributed system. ZeroMQ (also ØMQ
or ZMQ) is “a socket library that acts as a concurrency framework” [3]. Piël [10]
writes: “ZeroMQ is a messaging library, which allows you to design a complex
communication system without much effort.” ZeroMQ does that by providing
socket types for various communications patterns (e. g., Request/Reply, Pub-
lish/Subscribe or pipelines) but also allows a complex routing of messages via
various processes. It is also very fast and implementations exists for various
languages, including C/C++, Python, Java and .NET [4]. Mosaik uses ZeroMQ’s
Python bindings which are called PyZMQ2.

The simulators mosaik uses can be distributed over several servers, but there
needs to be one primary server which manages all subprocesses and to which
clients can connect. We call that central process the Master Control Program

2http://zeromq.github.com/pyzmq/

7

http://zeromq.github.com/pyzmq/


mosaik – Architecture Whitepaper Process Architecture

(MCP). However, the MCP does not control the simulators directly (and could
not start simulations on remote machines at all). Starting and controlling
simulators is handle by the Platform Managers (PMs). The MCP starts one on
the local machine. PMs on remote machines need to be started manually and
connect themselves to the MCP. The composition and execution of a simulation
is done by a Worker process. Worker processes are started by the MCP each time
the user starts a simulation. They automatically shut down when the simulation
has finished. Storing simulation data and log messages is done by a single Log
Manager (LM) process to avoid concurrent disk access by multiple processes.
One ore more (graphical) clients (GUI) can connect to the MCP in order to
upload new scenarios, start simulations or retrieve simulation data. Figure 4

depicts the process hierarchy (dotted lines) and which processes communicate
with each other (arrows).

The following sections describe the architecture of the processes in more
detail.

5 Process Architecture

All mosaik processes comprise three layers as shown in figure 5. The lowest
layer contains the event loop and one or more PyZMQ streams (which are
basically wrapped ZMQ sockets so that they can be used with PyZMQ’s event
loop). On top of that, there is a message handler for each stream. The message
handler deserializes incoming messages, performs message routing and sends
outgoing messages based on the results of the actual application logic. The
application logic is located in the third layer and is completely ZMQ-agnostic.

5.1 Master Control Programm

The MCP is—socket-wise—the most complex of mosaik’s processes (see fig-
ure 6). It has distinct sockets for communicating with GUIs, PMs, Workers and
the Log Manager to separate message handling code and to make it harder for
(evil) clients to pretend to be a PM or another internal process. This also allows
for a fine granular configuration of the server’s firewall. For example, the two
ports that GUIs connect to could be opened for a wider range of IP-addresses
and the two ports for PMs only for a few selected machines, while the remaining
ports for the Workers and the Log Manager are completely blocked and only
available from the local machine.

Communication with (graphical) clients, like adding or deleting scenarios, is

8



mosaik – Architecture Whitepaper Process Architecture

Application LogicApplication Logic

…Message 
Handler A

Message 
Handler X…Message 

Handler A
Message 

Handler X

Event Loop

…Socket A Socket X

Event Loop

…Socket A Socket X

Figure 5: Mosaik’s processes comprise a simple three-layer architecture. The two
bottom layers are PyZMQ-specific and perform message retrieval and
handling, while the application logic in the third layer is completely
PyZMQ-agnostic.

Scenario Manager DispatcherScenario Manager Dispatcher

PubRouter Pub Router Router Pull Push DealerPubRouter Pub Router Router Pull Push Dealer

GUIs PMs Workers Log ManagerGUIs PMs Workers Log Manager

Figure 6: The MCP manages the scenarios uploaded by the users and dispatches
commands between the Workers and PMs (and their simulators).

9



mosaik – Architecture Whitepaper Process Architecture

done via a router socket. The router socket can asynchronously receive requests
from clients and remembers which client to sent the reply to, once it is available.
A pub socket is used to broadcast the progress of a simulation or the list of
available scenarios to all currently connected clients.

The scenarios (or simulation studies, as they are called in mosaik’s scenario
specification formalism) are managed by the ScenarioManager. It also starts the
worker processes when a client requests to starts a simulation. A simulation
study can contain multiple scenario variants (e. g., multiple simulation time
periods like summer and winter). Each of them can be simulated multiple
times to account for elements of probability in stochastic simulations and to
determine the variation and probability distribution of the simulated scenario
[6]. The execution of one repetition of a scenario variant is called experiment, so
there are |variants| × |repetitions| experiments for each simulation. One worker
process is started for each experiment.

Another pub socket regularly sends a heart-beating signal to connected PMs.
PMs that receive that signal should respond with a list of their available simula-
tors and their priority, so that the MCP knows which simulators are globally
available and which PM has the precedence over others if several offer the same
simulators. Via a router socket, the MCP forwards messages (e. g., commands to
start a certain simulator) from a Worker to the proper PM.

The communication with Workers also happens mainly via a router socket.
A Dispatcher handles the routing of messages between Workers and PMs.
Simulation data and log messages are received via a pull socket since no reply
is necessary in this case. The MCP forwards log messages and simulation data
via a push socket to the Log Manager.

The Log Manager itself also pushes its log messages to the MCP. This may
seem unnecessary, but the MCP broadcasts all log messages to connected GUIs
and thus needs to receive the messages from the LM. Clients’ requests for
simulation data are sent via a dealer socket to the Log Manager.

5.2 Platform Manger

The PM is the link between simulators and mosaik’s MCP. An instance of it
must be running on each machine on which a simulator should be started. The
PM’s Sim Manager (see figure 7) starts and stops simulators and dispatches
messages between them and the MCP.

The PM receives the MCP’s heart-beating signals via a sub socket and replies
via a dealer socket with its priority and a list of its locally available simulators.

If it starts simulators for a worker, it keeps an internal mapping of the

10



mosaik – Architecture Whitepaper Process Architecture

Sim ManagerSim Manager

DealerSub RouterDealerSub Router

MCP SimulatorsMCP Simulators

Figure 7: The Platform Manager manages the simulators available on its ma-
chine. It can start/stop them and forwards commands sent from a
Worker via the MCP to running simulators.

Worker’s UUIDs3 and the UUIDs of the simulators associated with that Worker
which is required to correctly route messages between them.

Commands for the simulators are also received via the dealer socket and
forwarded to the correct simulator via a router socket. The simulator’s reply
takes the same way in the opposite direction. When a Worker signals a PM that
its simulation it done, the PM sends stop messages to all simulators associated
with that Worker to allow them a clean shutdown. Simulators that don’t stop
cleanly after a few seconds are being killed.

5.3 Worker

Workers (figure 8) execute an experiment. They parse the scenario configuration,
compose the simulation based on the given variant of the simulation study
defined in the scenario configuration and coordinate the simulators that are
needed for the simulation.

Once the setup and composition of an experiment is done, the Worker sends a
list of required simulators to the MCP via its dealer socket. The MCP determines
the responsible PMs and sends start requests to them. The PMs signal the MCP
when their simulators are started. When all PMs are done, the MCP signals the
Worker that it can start the simulation.

A Worker can send a command to multiple Simulators at the same time, so
that the simulators can execute them in parallel. Their replies are sent back to

3ZeroMQ uses UUIDs to unambiguously identify remote peers of a socket and to allow the
routing of messages via multiple nodes.

11



mosaik – Architecture Whitepaper Process Architecture

ExperimentExperiment

PushDealer PushDealer

MCPMCP

Figure 8: The Worker performs the scenario composition and manages the
execution of the simulation.

the worker, one at a time, when a simulator is done executing the command.
Depending on e. g., the execution schedule for the simulators, the Worker may
or may not sent further commands to (other) simulators when it receives a reply
from a simulator. That is because the experiment engine doesn’t have an active
event-loop and only gets triggered by the PyZMQ event-loop when it receives a
new message. That is no problem, because the experiment engine always sends
all currently possible commands at the same time and would have to wait for a
reply anyways.

During the execution of the experiment, the worker regularly pushes simula-
tion data and information on the progress of the simulation to the MCP via its
push socket.

When the simulation is done, the Worker sends stop messages to all simulators
and shuts itself down.

5.4 Log Manager

The Log Manager (figure 9) serves as a central database for simulation data and
log messages to minimize concurrent disk I/O.

It receives data via a pull socket and stores it in a database backend. Queries
from a GUI (which are routed via the MCP) are handled with a dealer socket.
Log messages that are produced by the Log Manager itself are pushed via a
push socket to the MCP so that it can forward them to the clients.

12



mosaik – Architecture Whitepaper API for Simulators

DatabaseDatabase

ReplyPull PushReplyPull Push

MCPMCP

Figure 9: The Log Manager serves as a central database for simulation data and
log messages.

6 API for Simulators

In order to be used with mosaik, a simulator needs to provide a self-description
file as explained in [14] and it needs to implement mosaik’s API for simulators.
There is a low- and a high-level API. The former uses ZeroMQ as transport
layer for messages and JSON to encode the messages. It is available for all
languages that ZeroMQ supports. The latter offers a base class that encapsulates
the low-level API and a method to start the simulator. The high-level API is
currently available for Python, but we are planning to implement one at least
in C and Java as well. Figure 10 depicts the differences between the two API
levels.

6.1 The Low-Level API

Simulators communicate with a PM via a request (REQ) socket. That means
that they send requests for a new command to a PM and the PM replies with
a new command to execute. This is a little bit counter-intuitive, since the
simulator is actually a “server” and would thus normally use a reply (REP)
socket and answer requests (commands) from the PM with the return value of
that command.

There are two reasons for this behavior. First, it would be unpractical to
let the simulator bind itself to a port. There may be several instances of that
simulator running in parallel, so which port should it bind to? And how would
the PM know that port? So the PM binds a router socket to a known port which
all simulators can connect to. However, the problem with this is, that the PM

13



mosaik – Architecture Whitepaper API for Simulators

Simulator with
High-level API

Simulator with
Low-level API g

Interface

Simulator

Interface

SimulatorImplemented 
by User

ØMQ

JSON

Interface

ØMQ

JSON

Interface

Interface

Simulator

Interface

Simulator
by User

ØMQØMQ

Base InterfaceBase Interface

ØMQ

JSON

ØMQ

JSON

Provided 

ØMQ ØMQ 

by mosaik

Platform 
Manager

Platform 
Manager

Figure 10: Mosaik offers two API levels. The low-level API allows (or requires)
you to directly work with a ZeroMQ socket and manually de-/encode
messages with JSON. The higher level API offers a base class that
you can simply inherit from, but is available only for a few platforms.

ec send

send
["sim_ready", <sim_name>]

recv

msg?msg?

send

execute

["sim_cmd_done", [<cmd>, <retval>]]msg

msg?msg? execute
[<cmd>, {<params>}]["plzdiekthxbye", {}]

Figure 11: The sim_ready message tells that the PM the simulator named
<sim_name> is ready to receive commands. <sim_name> must be
the same name as in the simulator self-description. As long as the
simulator receives no stop message, it executes a <cmd> and sends
back its result.

14



mosaik – Architecture Whitepaper API for Simulators

cannot poll a simulator if it is ready, since a router socket works like an extended
reply socket and thus only answers requests and needs an address to which to
send the reply to. To solve that problem, the simulator sends a ready-message
with its name in order to signal the PM that it is ready to accept commands and
to let the PM know its socket UUID.

After the ready message has been sent, there may be an arbitrary number of
cycles where the PM sends a command and the simulator replies with its results.
The final command the PM sends is a stop message after which the simulator
should shut itself down. Figure 11 depicts the communication between the PM
and a simulator from the simulators point of view.

Note, that in contrast to the XML/RPC protocol, all communication with
a simulator is completely asynchronous. That means that the PM can trigger
multiple simulators in parallel and collect their results once they are available.

As figure 11 suggests, there are multiple commands the simulator can receive,
each of which must be answered with an appropriate sim_cmd_done message:

cmd: "init"

The init message is the first command that the PM sends and it is sent
only once. It is used to configure the simulator and to setup the model
instances.

params: "step_size": <int>, "sim_params": <object>,

"model_config": <list of tuples>

The step_size parameter defines how many minutes (in simulation
time) the simulator needs to simulate on each step command (see
below). The sim_params parameter is a JSON object (or dict in Python
terminology) with various additional parameters which were defined
in the simulators self-description. Finally, the model_config param-
eter contains four-tuples (cfg_id, model_name, num_instances, params)
which configure a number of instances for a certain model that the
simulator provides.

retval: [[<cfg_id>, <model_instances>], ...]

The return value of the init command is a list of tuples. Each tuple
contains a cfg_id and a list of model instances [instance_entities

+], with instant_entities = [e_tuple+] and e_tuple = (e_eid, e_type).
The (Entiy-ID, Entity-Type) tuples represent the instances (entities)
of a model.

cmd: "get_relations"

15



mosaik – Architecture Whitepaper API for Simulators

This is a request to retrieve the relation between the entities of the simula-
tor.

params:
This message has no parameters.

retval: [[<eid1>, <eid2>], ...]

The return value is a list with a tuple for each relation, where the
tuple contains the IDs of two related entities.

cmd: "get_static_data"

This message is a request to retrieve all static attributes for all entities.
Static attributes are attributes that don’t change during the execution of
the simulation.

params:
This message has no parameters.

retval: [[<eid>, {"<attr>": <val>, ...}], ...]

The return value is a list of tuples, where each tuple consists of an
entity ID and the static data for that entity.

cmd: "get_data"

This is a request to get the values for a number of attributes of an entity
within a model. This methods returns the current values for all attributes
in attributes for all etype typed entities of the model model_name.

params: "model_name": <string> , "etype": <string>,

"attributes": [<string>, ...]

model_name and etype are the names of a model and an entity type
within that model. attributes is a list of attribute names of that entity
type.

retval: [["<eid>", {"<attr>": <val>,..., ...]]|

The return value of that message is a list with a tuple for each entity.
Each tuple consists of the entity ID and a data object.

cmd: "set_data"

Sets the attribute values for a list of entities.

16



mosaik – Architecture Whitepaper API for Simulators

params: "data": [["<eid>", {"<attr>": <val>, ...}], ...]

The value of data is a list with a tuple for each entity. Each tuple
contains the entity’s ID and an object with the data to set.

retval: null

cmd: "step"

Advances the simulation by step_size steps (as defined in the init method)
and returns the current simulation time.

params:
The step command has no parameters.

retval: <int>

The current simulation time should be returned.

6.2 The High-Level API

Currently, a high-level mosaik API is only available for Python, so the remainder
fill focus on this implementation. However, APIs for other Languages (e. g. Java)
will expose the same functionality in a similar way.

The high-level API automatically creates the required socket, connects to
the PM and starts a simple event loop that sends and receives messages and
(de)serializes their contents. Each cmd is mapped to a method with the same
name and the contents of the params object (which will be a plain dict after
the deserialization) are passed as keyword arguments (named parameters). For
example, the message

["init", {"step_size": 15, "sim_params": {},
"model_conf": []}]

will result in a call

init(step_size=15, sim_params={}, model_conf=[]).

The return value of that function is directly used for the retval placeholder in
the simulator’s reply to the PM.

You only need to implement an interface with the according methods that
makes the appropriate calls to your simulator. The API therefore offers a base
class, that you simply can inherit from. There is also a method that you can
call from your main() to start the event loop. Furthermore, you can specify
additional command line arguments that your simulator may require. The
following listing shows how the API can be used:

17



mosaik – Architecture Whitepaper Conclusion

from mosaik_api import Simulation, start_simulation

class ExampleSim(Simulation):
sim_name = ’ExampleSimulation’

def configure(self, args):
# Here you could handle additional commandline arguments

def init(self, step_size, sim_params, model_conf):
# Initialize the simulator and create all entities
# and return the entity IDs

# Implement the remaining methods (step, get_data, ...)

if __name__ == ’__main__’:
import sys

description = ’A simple example simulation for mosaik.’
extra_options = [

((’-e’, ’--example’), {
’help’: ’This is just an example parameter’,
’default’: True,

}),
]

sys.exit(start_simulation(ExampleSim(), description, extra_options))

7 Conclusion

This paper explained the architecture of mosaik’s server side and the API
that simulators need to implement in order to work with mosaik. Since the
implementation is work in progress, the API might still change in the future
due to new requirements. However, we already implemented a first prototype
during the GridSurfer project [15] that integrated simulators for electric vehicles,
PV and households as well as a static load flow analysis.

The new and overhauled architecture worked out quite well so far and the
processes that are already implemented are well tested and documented. We are
also planning to provide implementations of the high-level API for additional
languages like C or Java.

This paper may be updated to adjust to changes of the API or the implemen-

18



mosaik – Architecture Whitepaper References

tation of mosaik.

References

[1] Jan D. Gehrke, Arne Schuldt, and Sven Werner. Designing a Simula-
tion Middleware for FIPA Multiagent Systems. In 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technol-
ogy, pages 109–113. IEEE, December 2008. ISBN 978-0-7695-3496-1. doi:
10.1109/WIIAT.2008.202.

[2] G. Hemingway, H. Neema, H. Nine, J. Sztipanovits, and G. Karsai. Rapid
synthesis of high-level architecture-based heterogeneous simulation: a
model-based integration approach. Simulation, 88(2):217–232, March 2011.
doi: 10.1177/0037549711401950.

[3] iMatix Corporation. Ømq – the intelligent transport layer, 2012. URL
http://www.zeromq.org/.

[4] iMatix Corporation. Ømq language bindings, 2012. URL http://www.
zeromq.org/bindings:_start.

[5] Hoyt Koepke. 10 reasons python rocks for research (and a few reasons it
doesn’t), 2010. URL http://www.stat.washington.edu/~hoytak/blog/
whypython.html.

[6] MathWorks. MathWorks Deutschland – Simulating Models –
MATLAB, 2012. URL http://www.mathworks.de/help/simbio/ug/
simulating-models.html.

[7] Federico Milano. Power System Modelling and Scripting. Springer, London,
1st edition, 2010.

[8] Bryan O’Sullivan. Mercurial: The definitive guide, 2009. URL http:
//hgbook.red-bean.com/read/how-did-we-get-here.html.

[9] Mikel D. Petty and Eric W. Weisel. A formal basis for a theory of semantic
composability. In Proceedings of the Spring 2003 Simulation Interoperability
Workshop, Orlando, FL, April, 2003.

[10] Nicolas Piël. Zeromq an introduction, 2010. URL http://nichol.as/
zeromq-an-introduction.

19

http://www.zeromq.org/
http://www.zeromq.org/bindings:_start
http://www.zeromq.org/bindings:_start
http://www.stat.washington.edu/~hoytak/blog/whypython.html
http://www.stat.washington.edu/~hoytak/blog/whypython.html
http://www.mathworks.de/help/simbio/ug/simulating-models.html
http://www.mathworks.de/help/simbio/ug/simulating-models.html
http://hgbook.red-bean.com/read/how-did-we-get-here.html
http://hgbook.red-bean.com/read/how-did-we-get-here.html
http://nichol.as/zeromq-an-introduction
http://nichol.as/zeromq-an-introduction


mosaik – Architecture Whitepaper References

[11] Python Software Foundation. About python, 2011. URL http://www.
python.org/about/.

[12] Steffen Schütte. Composition of simulations for the analysis of smart
grid scenarios. In Energieinformatik 2011, pages 53–64. Prof. Dr. Dr. h.c. H.-
Jürgen Appelrath, Clemens von Dinther, Lilia Filipova-Neumann, Astrid
Nieße, Prof. Dr. Michael Sonnenschein and Christof Weinhardt, 2011.

[13] Steffen Schütte, Stefan Scherfke, and Martin Tröschel. Mosaik: A frame-
work for modular simulation of active components in smart grids. In
1st International Workshop on Smart Grid Modeling and Simulation (SGMS),
pages 55–60. IEEE, 2011.

[14] Steffen Schütte, Stefan Scherfke, and Michael Sonnenschein. mosaik –
smart grid simulation api. In Brian Donnellan, João Peças Lopes, João
Martins, and Joaquim Filipe, editors, Proceedings of SMARTGREENS 2012
- International Conference on Smart Grids and Green IT Systems. SciTePress,
2012.

[15] Martin Tröschel, Stefan Scherfke, Steffen Schütte, Astrid Nieße, and
Michael Sonnenschein. Using electric vehicle charging strategies to maxi-
mize pv-integration in the low voltage grid. In 6. Internationale Konferenz
und Ausstellung zur Speicherung Erneuerbarer Energien (IRES 2011), 2011.

[16] Bernhard P. Zeigler, Tag G. Kim, and Herbert Praehofer. Theory of Modeling
and Simulation. Academic Press, New York, 2nd edition, 2000.

20

http://www.python.org/about/
http://www.python.org/about/

	Introduction
	Requirements
	Guiding Principles
	Overall Architecture
	Process Architecture
	Master Control Programm
	Platform Manger
	Worker
	Log Manager

	API for Simulators
	The Low-Level API
	The High-Level API

	Conclusion

